Structure and Properties of DNA Molecules Over The Full Range of Biologically Relevant Supercoiling States
نویسندگان
چکیده
Topology affects physical and biological properties of DNA and impacts fundamental cellular processes, such as gene expression, genome replication, chromosome structure and segregation. In all organisms DNA topology is carefully modulated and the supercoiling degree of defined genome regions may change according to physiological and environmental conditions. Elucidation of structural properties of DNA molecules with different topology may thus help to better understand genome functions. Whereas a number of structural studies have been published on highly negatively supercoiled DNA molecules, only preliminary observations of highly positively supercoiled are available, and a description of DNA structural properties over the full range of supercoiling degree is lacking. Atomic Force Microscopy (AFM) is a powerful tool to study DNA structure at single molecule level. We here report a comprehensive analysis by AFM of DNA plasmid molecules with defined supercoiling degree, covering the full spectrum of biologically relevant topologies, under different observation conditions. Our data, supported by statistical and biochemical analyses, revealed striking differences in the behavior of positive and negative plasmid molecules.
منابع مشابه
Large-Scale Conformational Transitions in Supercoiled DNA Revealed by Coarse-Grained Simulation.
Topological constraints, such as those associated with DNA supercoiling, play an integral role in genomic regulation and organization in living systems. However, physical understanding of the principles that underlie DNA organization at biologically relevant length scales remains a formidable challenge. We develop a coarse-grained simulation approach for predicting equilibrium conformations of ...
متن کاملPrediction of In Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives
Retention behavior of molecules mostly depends on their chemical structure. Retention data of biologically active molecules could be an indirect relationship between their structure and biological or pharmacological activity, since the molecular structure affects their behavior in all pharmacokinetic stages. In the present paper, retention parameters (RM0) of biologically active 1,2-O-isopropyl...
متن کاملPrediction of In Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives
Retention behavior of molecules mostly depends on their chemical structure. Retention data of biologically active molecules could be an indirect relationship between their structure and biological or pharmacological activity, since the molecular structure affects their behavior in all pharmacokinetic stages. In the present paper, retention parameters (RM0) of biologically active 1,2-O-isopropyl...
متن کاملTopoisomerase Inhibitors and Types of Them
Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...
متن کاملTopoisomerase Inhibitors and Types of Them
Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017